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Abstract

Intersonic crack growth has been studied using an interfacial fracture model in which an additional material phase
within a bonding layer is proposed to describe the failure behavior of the interface. In this material phase, a strain
gradient based damage model is applied with a built-in cohesive law, which is governed by an material intrinsic length
scale that bridges the mechanisms that operate at continuum mechanics scale and at smaller scales. Simulations of the
intersonic crack growth experiments (Rosakis et al., 1999; Rosakis, 2002) have been performed with varying material
length scales and other parameters. The study is focused on two subjects: (1) the process of decohesion-induced
cracking, explaining fracture process zone initiation and propagation as well as the corresponding contact mechanisms;
(2) propagation speed, investigating the effects of length scales and loading parameters.

The simulations reveal that a fracture process zone initiates first and extends with a speed faster than shear wave
speed. After initiation, the crack speed exhibits oscillations with an average value between ¢V2 and ¢, where ¢ and ¢
refer to shear wave and dilatation wave speeds, respectively. In such a quasi-steady-state propagation, the crack
opening profiles exhibit a time-invariant profile, while the fracture process zone size and decohesion energy remain
constant. Contact between the crack faces is taken into account in the numerical simulations. A contact zone behind the
crack tip has been captured which represents a self-healing-like mechanism. The leading edge of both the fracture
process zone and the contact zone may cause strong shocks. When the average crack propagation speed approaches the
supersonic region, two stress shocks radiate from the crack tip, corresponding to shear and dilatation wave radiation,
respectively. The simulation results demonstrate that length and time scales play vital roles during crack propagation.
Here the length scales refer to the bonding layer thickness and the material’s intrinsic length that governs energy
dissipation during failure; whereas the time scales refer to the effects of material strain rate dependence, material failure
speed, and wave propagation properties. A parameter R, expressed as the ratio of material shear strength and the
applied stress that is calculated from the remote imposed displacement boundary condition, is proposed to scale crack
speed. Intersonic propagation occurs when Rg is greater than a threshold value. The numerical computations are
compared with experiments (Rosakis et al., 1999; Rosakis, 2002) and the theoretical solution [Philos. Mag., A, in press],
which demonstrates the trend that crack propagation is unstable in the open speed interval between ¢, and K¢
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(\/E < Ky < ¢1/cs) whereas it is stable when the speed lies in the close interval between k¢ and ¢;. The coefficient «, is a
function of material length scale, strain rate sensitivity, and boundary conditions. The moving particle finite ele-
ment method, a newly developed meshfree method, and the pinball contact algorithm are applied in the numerical
analysis.

© 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The issues of the limiting speed of dynamic crack growth and the stress and strain fields surrounding a
crack tip moving faster than the characteristic wave speeds have recently received a lot of attention
(Rosakis et al., 1999; Rosakis, 2002). Washabaugh and Knauss (1994) find that the velocity of a mode I
crack tip propagating along a fabricated weak plane may asymptotically approach the Rayleigh wave
speed. The tests of mode II crack propagation along a weak plane conducted by Rosakis and his co-authors
(Rosakis et al., 1999, 2000) reveal that given sufficient driving force, the crack propagation speed can jump
to the intersonic speed regime, speeds lying between ¢, and ¢, the shear and dilatational wave speeds,
respectively.

The theoretical linear elastic dynamic crack growth analyses, as elegantly summarized by Freund (1990)
and Broberg (1999a,b), indicate that the order of the stress singularity at such a crack tip and the corre-
sponding energy release rate depends upon its propagation speed. For mode I crack growth in isotropic
solids, the physically admissible stress singularity and the energy release rate vanish when the propagation
velocity exceeds the Rayleigh wave speed. Whereas for mode II intersonic crack growth, the crack tip
singularity is less than 1/2 which leads to a positive crack tip energy release rate. In this case, both the crack
tip asymptotic solution (Freund, 1979) and dislocation analysis (Weertman, 1969; Weertman and Weert-
man, 1980) indicate that such a crack propagation is accompanied with stress radiation that has the same
order as the crack tip stress except at the Eshelby speed, i.e. at ¢;v/2 where the corresponding crack tip
singularity is 1/2. Griffith’s Theory requires a crack tip stress singularity with a power of half. Thus, the-
oretically the Eshelby speed is the only admissible speed for steady-state mode II crack propagation above
the shear wave speed.

On the other hand, both the analysis of seismic data (Bouchon et al., 2001) and experimental
observations (Rosakis et al., 1999) demonstrate that a shear fracture on a pre-existing fault or a weak-
path crack growth under mode II dynamic load can propagate in a wide range of speeds above the shear
wave speed. A unified explanation is that the material decohesion in the weak path, rather than stress
singularity, dominates the propagation under this situation, which actually smears out the stress con-
centration at the crack tip and thus removes the radiated stress singularity at shock front (Burridge et al.,
1979; Broberg, 1999a,b; Needleman and Rosakis, 1999). From this view, several challenging issues are
raised:

. How does a crack initiate and grow from a static state to intersonic speeds?

. When the Eschelby speed is no longer the uniquely admissible intersonic speed, which factors determine
crack propagation speeds?

. How does the material viscosity (strain rate sensitivity-drag effect) affect propagation?

. What is the role of crack surface contact during decohesion and intersonic crack growth?

5. What are the effects of material intrinsic and extrinsic lengths on this class of problems?
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Motivated by the Rosakis’ experiment and seismological observations, a comprehensive numerical study
focusing on the issues mentioned above is performed. As compared with previous research reports, the
distinguishing points and contributions of the present work are as follows:

1. A three-phase model is proposed to simulate interface fracture, in which an additional interface material
phase is introduced between two solid matrices in a bi-material system. The bonding strength and related
mechanical properties are define by the constitutive law of this interfacial material phase.
2. The effects of length scales and strain rate have been investigated for the laboratory scale dynamic test.
The length scales refer to the material intrinsic length presented in a strain gradient theory-based con-
stitutive law whereas the extrinsic length refers to the bonding layer thickness that contains the interfa-
cial phase.
3. In order to obtain the detailed information of intersonic crack propagation, the mode I and II crack
opening displacements, the decohesion energy and fracture toughness are simulated and studied.
4. In conjunction with a multi-scale constitutive model (Hao et al., 2000c; Hao et al., in press), the moving
particle finite element (Hao et al., 2002; Hao et al., in press), a newly developed numerical method, is
applied in the simulations. Using this method we are able to
e implement the contact mechanism into the numerical simulation. Several contact-related phenomena,
such as self-healing, have been captured.

¢ investigate some parameters and conditions that affect propagation speed which are currently difficult
to simulate by other methods.

e capture both intersonic and supersonic shocks, either in the stress or strain fields.

5. Both crack acceleration and deceleration have been studied. It has been found that the intersonic crack
tip field radiates out from the site where a crack started to decelerate.

6. The numerical simulations are generally in agreement with the experimental observations (Rosakis et al.,
1999; Rosakis, 2002) and theoretical predictions (Hao et al., in press) that intersonic crack propagation is
unstable in the open speed interval between ¢, and x,c; whereas it is stable when the speed lies in the close
interval between k,c; and ¢;. The parameter r, is a function of material intrinsic and extrinsic lengths,
strain rate hardening parameters, and boundary conditions.

A considerable number of reports regarding intersonic and supersonic crack propagation can be found in
the past three decades, including Andrews (1976), Burridge et al. (1979), Weertman and Weertman (1980),
Piva and Hasan (1996), Huang et al. (1998), Gumbsch and Gao (1999), Huang et al. (1999), Needleman
(1999), Needleman and Rosakis (1999), Ben-Zion (2001), Dwivedi and Espinosa (submitted for publication),
Federici et al. (2001), Geubelle and Kubair (2001), Samudrala et al. (2002), Guo et al. (2003) and Samudrala
and Rosakis (2003). Reviews of dynamic fracture in seismic studies are presented by Dmowska and Rice
(1986) and Freund (1990), and recently by Rosakis (2002). With respect to numerical analysis, Andrews
(1976) first simulated intersonic shear failure using a finite difference technique. Applying cohesive finite
elements, Needleman and Rosakis (1999) study the effects of loading rate and strength of the weak path.
Gumbsch and Gao (1999) simulate intersonic crack growth using molecular dynamics. Molecular dynamics
simulations of supersonic crack propagation were conducted recently by Gao et al. (2001). The effects of
strain rate sensitivity (drag) and strain gradient on single dislocation motion with speeds in subsonic,
intersonic, and supersonic regions has been analyzed by Rosakis (2001). As an complement to this paper, a
theoretical analysis of steady-state intersonic crack growth has been conducted in Hao et al. (in press) based
on the moving dislocation solution introduced in Weertman and Weertman (1980).

This paper is organized as follows: Section 2 gives the problem statement, a brief introduction of the
multi-scale damage constitutive law that is applied in the numerical simulation, and the proposed interface
fracture model. The corresponding numerical scheme is illustrated in Section 3. The simulation results and
discussions are presented in Section 4. Section 5 summarizes conclusions.
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In the analysis that follows, boldface letters are used to represent tensors. Plan letters represents scalars.
Plain letters with subscripts represent the components of a tensor, where the Einstein summation con-
vention is applied to repeated subscripts.

2. Problem statement, interfacial fracture model, and constitutive law
2.1. Problem statement and experimental configuration

Caltech’s mode II dynamic shear rupture specimen (Rosakis et al., 1999) is shown in Fig. 1. It is
composed of two pieces of Homalite-100 (a photoelastic polymer) bonded along a horizontal interface. The
bonding is produced by using the monomer of the photoelastic polymer and by polymerizing in situ using a
catalyst. The resulting adhesive material has elastic properties that are very close to those of the two
monolithic pieces and variable strength depending on the curing time. Its strength is in general lower than
the monolithic Homalite, a condition necessary to trap the resulting shear crack and to force it to propagate
along the weak bond without kinking into the Homalite pieces. Its height, 4, is of the order of 100 um. A
notch is machined along the bond line. Asymmetric dynamic loading is provided by firing a steel projectile
onto the upper half of the specimen just above the pre-notch. The impact velocities range from 20 to 35 m/s.
The impacting projectile loads the notch in shear (a small component of compression is also present) and
produces a concentration of shear stresses along the weak bond. As the shear stresses and strain rates
increase at the notch tip, a dynamically growing shear rupture is produced and grows along the bond with
intersonic speeds (Rosakis et al., 1999). The rupture process is visualized by means of high speed photo-
graphy (2 million frames/s) and the optical method of photoelasticity. Photoelasticity, which is sensitive to
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Fig. 1. Caltech mode II dynamic fracture test.
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maximum shear stresses, is the ideal technique to be used in visualizing shear dominated fracture events.
Indeed, the intersonic shear ruptures reported by Rosakis et al. (1999) are seen to feature two very well
resolved shear shock waves (discontinuities in shear stress) that are attached to the intersonically moving
shear crack tip, clearly revealing the intersonic nature of the dynamic shear rupture processes.

2.2. Three-phase interfacial fracture model

For the specimen shown in Fig. 1, the upper and lower solid domains are made of Homalite-100
(Rosakis et al., 1999). Instead of ideal bonding, we assume that a thin material layer with a height 4 exists
between the two pieces. The bonding and decohesion properties are defined by the constitutive law that
governs this third material, which will be described in the next subsection. Hence, interfacial debonding of
the specimen shown in Fig. 1 is modeled as the fracture problem involving the sandwich structure shown in
Fig. 2 with an additional length scale 4, which is considered as a material “extrinsic length” for this model.
In reality, such bi-material interfacial transition zones always exist at micro-scale due to the diffusions.
According to experimental result, in the present analysis, the 4 is taken from 1 to 200 pm and its effect on
intersonic crack growth has been studied. For the specimen shown in Fig. 1, it has been reported that / is
about 20 pm (Rosakis et al., 1999; Rosakis, 2002).

2.3. Constitutive equation and length scale dependent cohesive law

In the present analysis, the bulk Homalite-100 is assumed to be isotropic and linearly elastic. The
bonding layer phase is modeled by the multi-scale damage constitutive model introduced in Hao et al.
(2000c) and Hao et al. (in press) that is described briefly as follows.

Assuming finite deformations but infinitesimal elastic strain, we apply the additive decomposition of the
strain rate tensor

b= i (1)

where &, the elastic part of strain rate, obeys the same linear elastic constitutive law as the bulk Homalite-
100. The plastic part of strain rate, &, is described by the plastic potential:
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Fig. 2. A three-phase model for intersonic interfacial shear fracture.
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where 2 is the “flow factor”, @ and o,, denote the Cauchy equivalent stress and Cauchy mean stress,
respectively; 1 represents the void volume friction which is considered as a damage. The parameters Ay, 4,
Ay, g1, &2, and ¢ are dimensionless material constants as listed in Table 1. The evolution laws of damage
nucleation and growth introduced in Tvergaard and Needleman (1992) are applied in the present work. In
Hao et al. (in press) a hierarchical constitutive model is developed that unions quantum physics with the
sub-micro and micro-cell models in continuum mechanics. The relation (2) is derived based on the macro-
scale potential obtained from micro-cell model.

The plastic potential (2) is associated with the multi-scale damage model in which the mechanisms from
two scales are taken into account. At macro-scale up to the point of bifurcation, the J,-like plasticity and
damage in the form of void nucleation and growth are taken as the dominant mechanisms of failure, which
is a combination of J,-plasticity, the Rice-Tracey model (Rice and Tracey, 1969), and Coulomb friction. A
computational methodology to calibrate the constants is introduced in Hao et al. (2000a). The collapse of
the ligaments between voids or between other defects is considered as the mechanism after the onset of
bifurcation, which highlights the underlying mechanisms at smaller scales which become dominant through
global material failure. At this stage the matrix material is modeled by a set of material particles connected
by a network of “virtual internal bonds” where each bond obeys the strain gradient-based localization
solution that defines a traction-separation law [25]. The development of the micro-ligament collapse model,
which is absent in the conventional Gurson’s model, is based on the idea that combines the computational
cell model, the concurrent two-scale simulation (Hao et al., 2000b), and the ““virtual internal bond model”
of cohesive material structure (Klein and Gao, 1998). For the isotropic case, the average stress—strain re-
sponse of this model is described by oy, at macro-scale, which is named as “material intrinsic strength” in
(2). It is defined as the combination of material strain hardening/softening law and the strain gradient-based
traction-separation law:

. _ ) O strain hardening/softening, & < [g" ™ )
e T(Y,1,n) decohesion softening, & > [g™™°
where the € is the plastic part of equivalent strain and [é]bifurC denotes the €P at the bifurcation point the on
ot (€P) relation. / is the material intrinsic length scale defined as the product of Burger’s vector » and the
initial yield strength oyy. 1 is the equivalent strain gradient (Gao et al., 1999):

EY\ 1
=31 — | b; = A/ 5 Uk, iUk ij
(O_YO) ) ’7 2uks/uka/

Table 1
The coefficients in (2)

Ay A, A g &2 q
0.0666 0 1.7 0 0 0.45
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Fig. 3. The built-in cohesive law and the definition of material intrinsic strength.

and the strain-like parameter Y is defined by

7 =@ - (4a)

ly
where /, is a material constant. As illustrated in Fig. 3, [£]”™* marks the transition between the two stages
of deformation, the uniform deformation with damage nucleation and growth and the failure of the liga-
ments between these defects. [g]”™* can be calibrated to the maximum stress on the gy, (2°) curve from the
uniaxial tension test. During the second stage, the effect of the material intrinsic length scale, strain gra-

dient, and strain rate are incorporated in oy, (4) as

T=oy-T@,11)- (1 +§> . lw

&0 (7))

+In (5)

The second term in (5) is the traction-separation law derived from the strain gradient-based localization
solution at the micro-scale. The third and fourth terms reflect, in turn, the strain rate effect and the material
hardening due to the strain gradient at macro-scale. As the micro-scale localization, representing ligament
failure, is described by T in (5), the stress—strain response without bifurcation, denoted by ayom (€P), appears
under the square root of the fourth term. B

Based on the analytical solution described in Hao et al. (2000b), 7 can be approximated as

~  —0.5398Y? 4 1.5867Y — 0.0466

T
1~ ks (52)

where

07— 30m

Y =exp {10(’ . (17)]_51}; ke = and k, < 1

20'1

where g; is the maximum principle stress and ;, represents the triaxiality of the stress state. In the cases of
pure triaxial tension and compression (k, = 1), it is assumed that the fine scale mechanism is not activated
as no shear stress exists to trigger localization. As illustrated in Fig. 3, the primary effect of the material
intrinsic length [ is a scaling of the energy dissipated during decohesion.

For the numerical simulations we employed a bilinear approximation to (5a) that incorporates the
essential characteristics in an expression with reduced complexity (see Fig. 4)
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For a metal, it is suggested that /, = 100 um (Hao et al., in preparation).

3. Numerical scheme

3.1. Discretization and model parameters

Three-dimensional meshfree simulations have been performed using the configuration shown in Fig. 5a.
The specimen is discretized into 2-5 layers in thickness direction. Each layer has about 11,000 nodes (total 5
layers) to 112,000 nodes (total 2 layers). The distribution of nodes in the vicinity of the notch tip is

illustrated in Fig. 5b.

The impact of the projectile is modeled by two methods: the projectile is assumed to be a rigid body
acting on the specimen; and the projectile is replaced by a prescribed velocity boundary condition. No
significant differences are observed between the two approaches. The contact algorithm used with the rigid
projectile requires additional computational effort. The fixed velocity boundary condition is imposed on the
specimen edge along a height equal to the diameter of the projectile. The imposed velocity varies in time as

described by Needleman (1999) and Needleman and Rosakis (1999):

Vot/t;, O<t<t
— I, L<t<t,
D= R ), i<+

0, ty+ 1<t

(6)

where V;, is the velocity of the projectile. In the present computation, ¢; and ¢ are chosen to be zero while #,

is equal to twice the time that a dilatational wave takes to travel the length of the projectile.
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Table 2
Parameters applied in numerical simulations
[ (mm) material 4 (mm) bonding oy, (MPa) m strain rate V, (m/s) impact W, (mm) dis- F, friction coeffi-
intrinsic length layer thickness bonding hardening velocity tance from the cient (outside
strength exponent projectile to the  fracture process
notch zone)
0.02, 0.04, 0.07,  0.01, 0.02, 0.05, 27,14, 7 0.01, 0.1 10, 20, 30, 40, 70 0.5, 2.5,5.5,9.5, 0, 1.0
0.10, 0.20 0.10, 0.16 25

The numerical study was conducted by varying material intrinsic length, bonding layer thickness, strain
rate, bonding strength, loading condition, and impact velocities. The values of these parameters are listed
in Table 2.

3.2. Numerical schemes

The moving particle finite element method (MPFEM) (Hao et al., 2002; Hao and Liu, 2002; Hao et al.,
in press), a new numerical method based on conventional finite element method (Oden, 1972; Hughes, 1987,
Belytschko et al., 2000) and the meshfree methodologies introduced in Belytschko et al. (1994) and Liu
et al. (1995, 1996, 1997), has been applied in the numerical analysis. The idea of the method can be briefly
described using the boundary value problem illustrated in Fig. 6a. An interpolated solution of displacement
u in a finite element can be expressed as
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(b) Interpolation at x (c)

Fig. 6. (a) A boundary value problem defined on Q(= Q U 9€Q). (b) An approximated solution at x can be obtained from either element
E| or E,. (c) MPFEM approximation—an average from the surrounding elements.

u(x) = ZN;E(X) ‘up

where N (x) is the interpolation function (shape function) for element E, 7 is the displacement « at node /
in element E, and NE denotes the total number of nodes in element E. The derivative of the field u(x)
at a point x (see Fig. 6b) can be obtained either through the interpolation of its left side element E; or the
right side element Ey:

du(x)
dx

2

BN du(x)
dx ! dx

Ey I=1

v,
d.x 1

E I=1

where NIE" (x) is the shape function for element E;, NE; and NE, represent the number of nodes in elements
E; and E,, respectively. For regular finite element method, a gap exists between these two interpolations
though they approach a convergent solution when the finite elements become very small. This is because
derivatives in conventional finite element solutions are discontinuous at element edges. The concept of the
MPFEM can be interpreted as a weighted summation of the solution from all finite elements adjacent to x,
as illustrated in Fig. 6c:

du Ne L dNF(x) 5
d(xX):Zw‘{ dx(X)u"} (6a)

—1

where the weight @; is calculated by minimizing the interpolation error using a meshfree scheme, which
removes the numerical discontinuity at element edges. Therefore, the basic idea of MPFEM can be
interpreted as an interpolation of finite element interpolation, which combines salient features of finite
element and meshfree methods while alleviates certain problems that plague meshfree techniques. It dis-
plays considerable stability under large deformations and efficiency with acceptable accuracy, especially for
dynamic problems involving high speed impacts. A detailed description of MPFEM can be found in lite-
ratures, e¢.g. in Hao et al. (in press).

For the intersonic crack propagation, the numerical analysis is carried out using a Lagrangian, large
deformation Galerkin formulation (Belytschko et al., 2000). The pinball contact algorithm (Belytschko and
Neal, 1991) is applied in the simulation. The reviews of the recent developments of meshfree methods can
be found in Belytschko et al. (1996) and Babuska et al. (in press).
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Fig. 7. Fracture process zone initiation and subsequent crack propagation. (a) #=0.80e-5, (b) t=1.12e-5, (c) t=1.20e-5,
(d) t=1.35¢-5, (e) t=1.45¢-5 and (f) t=1.70e-5.

4. Results and discussion
4.1. Crack initiation—an observation

Fig. 7 presents a set of snapshots of the numerical simulation of the specimen shown in Fig. 2. The
contours of the stress g, which is normal to the crack propagation path, are displayed in the vicinity of the
notch tip at different time steps. According to these figures, intersonic crack initiation may be divided into
four stages:

1. Initial wave propagation (Fig. 7a and b): the impact of the projectile induces a dilatational wave that
(dark blue color) sweeps transversely over the specimen with a distinct wave front. However, two kinds
of shear wave impulses could also exist behind the dilatation wave front but they are overshadowed in
these figures. They are the impact induced shear wave, which is behind the dilatation wave front with the
distance #(c; — ¢s) where ¢ is time, and the reflect shear wave when the dilatation wave impulse hits the
traction-free notch surface and bi-material interface.

2. After the dilation wave front has passed, a drop of g5, can be seen along the bonding layer ahead the
notch tip (Fig. 7b and c), marked as the line segment with light color emanated from the notch tip. This
drop is caused by the nucleation of a fracture process zone after the onset of material decohesion. Within
this zone, the softening of the interface material results in the localized fluctuation of stresses.
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3. Crack initiation (Fig. 7c and e): After a considerable fracture process zone formed, a significant stress
drop occurs in a relatively large area near the notch end, characterized by an increasing stress noise radi-
ation at both sides of the bonding layer, which can be interpreted as a crack initiation that creates nearly
traction-free new surfaces. It is well-known that a crack induced by mode II loading is always accompa-
nied by some mode I crack opening, which relaxes the impact induced compressive o5, and results in a
shock-like contour of stress noise (red color).

4. Acceleration and steady-state propagation (Fig. 7e and f): the angle between stress shock front and
bonding layer becomes smaller, implying that the crack growth is speeding up. In general this angle 0
is related to the propagation speed v through the relation (Weertman and Weertman, 1980):

0=sin"' (E) (7)

v

when v > ¢,.

Crack propagation can be considered as the accumulation of damage in the forms of micro-defects (such
as voids or micro-cracks) nucleation, growth, and coalescence. This process is characterized by the fast
softening stage defined in (4) and (5) of the constitutive model (see Figs. 3 and 4). When the dilatation wave
front hit the notch tip, the resulting shear stress causes the softening of the bonding layer material and
triggers spontaneous debonding along the weak path, which is reflected as the fracture process zone
emanating from the notch tip, as shown in Fig. 7.

Fig. 8 shows a comparison with experimental observations (Rosakis et al., 1999). The simulation results
in Fig. 8b show a strain (&) shock angle about 44° which is consistent with the experimental measurement
(Fig. 8a). As depicted in Fig. 8c, the simulated crack propagation speed, calculated using (7), agrees with
experiments.

4.2. Stress wave motion and decohesion

Fig. 9 illustrates an overview of the wave propagation mechanism for the specimen of Fig. 2. The stress
distributions along the line AA’ in Fig. 9a are displayed in Fig. 9b at three times, in which the dilatation
wave propagation demonstrated in Fig. 7 is actually formed by a rectangular-like ; impulse, plotted as the
dashed line in Fig. 9b. The o, impulse front, is accompanied simultaneously with the ¢, and a1, com-
ponents. Fig. 9b at time = 2.0e—5 shows the convex-shaped ¢, and o5, impulses. This g, impulse actually
imposes a mode II load on the notch tip, which triggers the fracture process zone initiation and drives it to

O simulaion - shock angle
B fesl- shock angle
4 tesl- high speed camera

25 50 75 [
Crack Propagation {mm)
(a) experiment (b) simulation (c) comparison

Fig. 8. A comparison between numerical simulation and experiment (Rosakis et al., 1999). (a) Experiment; (b) simulation and
(c) comparison.
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Fig. 9. (a) An illustration of the dilatation wave propagation and the corresponding stress state. (b) Stresses distribution along the line
AA’ in (a).

move forwards along the weak path. The amplitude of ¢;; impulse remains nearly constant while both the
0y and oy, decay earlier as new crack surfaces are formed. The trailing random stress impulses are the
result of crack face contact and wave reflections.

The numerical results demonstrate that the combination of computation and analysis may provide in-
sight for designing a dynamic fracture specimen. For the specimen shown in Fig. 1, to achieve a mode II-
like loading along the weak path requires the maximum shear stress and minimum normal compressive
stress g2, which causes contact, around the notch tip. Considering the dilatation wave front as the envelop
of the dilatation waves radiated from the point sources along the contact surface between specimen and
projectile, the maximum o, is attained when the tangent of the envelop declines to the notch with the angle
of m/4. This preliminary analysis estimates that the optimal W, in Fig. 2 should be the same as the length
of the pre-manufactured notch.

4.3. Definition of the “fracture process zone”

A precise definition of the “fracture process zone” is crucial for interpreting the results of a numerical
simulation in terms of quantitative analyses. According to the constitutive law defined in (4) and (5-5b),
decohesion begins when the equivalent plastic strain reaches [E]blf“rc that characterizes the onset of material
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Fig. 10. Definition and measurement of cohesive zone (fracture process zone) in the numerical simulation. (a) Definition;
(b) a numerical example; (c) measurement of a moving fracture process zone during crack growth.

bifurcation. This leads to an unambiguous definition (Fig. 10a): the fracture process zone starts where
e = [E]b'f‘“ and ends where the stress drops to zero. The physical meaning of the end of a fracture process
zone is obvious: when a material suffers enough deformation and thus is fully damaged, it loses the capacity
to sustain stress; which results in cracking.

The computed equivalent stress and strain along the bonding layer are plotted in Fig. 10b, illustrating
the fracture process zone measurement in this study. The mode II crack opening displacement (COD) is
also plotted in this figure, where the COD is defined as the separation between upper and lower boundaries
of the bonding layer. A time sequence of the computed equivalent stresses and strains along the bonding
layer are displayed in Fig. 10c.

4.4. Contact mechanism and self-healing phenomenon

The numerical simulation demonstrates that contact between newly formed crack surfaces is inevitable
during intersonic crack propagation in the specimen shown in Fig. 2 due to the material stretching per-
pendicular to impact direction. The contact mechanisms for such a dynamic crack growth can be explained
through the four deformation regions that are illustrated in Fig. 11a—c. They are: (I) decohesion zone
(fracture process zone), (II) opening, even under shear dominant loading, (III) crack closure leading to
contact among the material elements within the bonding layer, (IV) contact between two matrices. Stage IV
occurs only when the material in the bonding layer is fully damaged thus losing its capacity to sustain any
load according to the constitutive law (4) and (5).

Fig. 12 presents snapshots of the contours of equivalent plastic strain, strain gradient, and shear strain
within the bonding layer from a computation with # = 2/, where the vertical scale has been significantly
enlarged while the horizontal scale sustains. In this computation the upper half part of the specimen is hit
by a projectile. The equivalent plastic strain and strain gradient are plotted on the undeformed configu-
ration whereas the shear strain contours are plotted on the deformed configuration. The decohesion-
induced plastic strain (the contours with red color) represents the crack opening profile that is actually
composed of these fully damaged material elements, which are mainly concentrated in the upper half layer
with a width close to the material intrinsic length /. However, considerable plastic strain also exists in the
rest of the layer. Ultimately, all material elements in the bonding layer are fully damaged in the contact
zone IV.

The contact zone II introduced in Fig. 11 represents an opening dominated crack profile that forms
even under shear loading. This zone was detected using the results shown in Fig. 13 where the o, and g5,
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Fig. 11. An illustration of the effects of contact on crack opening closure profile. (a) The structure before impact. (b) After impact: an
illustration of deformation induced contact. (c) Crack opening (sliding) profiles. (d) Stress and strain shocks corresponding to crack
opening (sliding) and contacts.

are plotted along the bonding layer. Behind the convex peaks caused by impact induced impulse, both
stresses nearly vanish until the contact zone III, which is characterized by the fluctuating stress distri-
bution along the bonding layer. The stress shock presented in Fig. 7 is another result of the contact zone
11.

Plotted in Fig. 14 are the COD; (mode I COD) and CODj; (mode II COD) along the crack growing path
at three time steps, normalized by 4, the bonding layer thickness. These diagrams show that CODy is
negative, indicating that the crack faces are driven into contact. However, after a certain amount of crack
growth the CODj stays at the constant value about —4 while the increase of COD); is also slows (Fig. 14c),
which hints that the contact between two matrices occurs and the relative sliding between them almost
diminishes after the bonding layer material is fully damaged. This phenomenon is quite similar to the self-
contact/healing process that has been frequently observed in seismic motion (Perrin et al., 1995; Ben-Zion,
2001).

Theoretically, COD is defined over an idealized crack that is a line without width. In the numerical
simulations, it is measured over the gauge length 4, denoted by the superscript *, which is actually a
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Fig. 13. The shear and normal stresses on a propagating crack surface.

measurement of the average deformation over the bonding layer material. This average overshadows the
tiny positive COD; along the new crack surfaces.

In Fig. 15, the mode II separation is plotted with respect to a moving coordinate system with its origin
fixed to the tip of the fracture process zone. Over the different time steps, an almost constant crack opening
profile is present, indicating a nearly steady-state propagation.
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4.5. The effects of length scales: a parameter study

Dual functions have been assigned to the material intrinsic length / in the constitutive equations (4) and
(5): governing the strain gradient induced hardening before material bifurcation and scaling the energy
dissipation in post-bifurcation stage (see Figs. 3 and 4). Comparing Fig. 3 with Fig. 10 that illustrates the
definition of fracture process zone, one can find that the intrinsic length / actually scales the size of fracture
process zone and the decohesion energy.

The crack tip in the specimen in Fig. 2 is governed by the elastic—plastic field within the bonding layer
and the elastic field in the surrounding matrices. The material extrinsic length, the thickness %, determines
the ratio of the influences from these two fields on the crack tip. The slip-field analysis in Hao et al. (1997)
reveals that 4 also determines the amplitude of the stress triaxiality in the bonding layer.

These functions of /, 4 and their effects on intersonic growth are studied quantitatively in this subsection.

According to dislocation theory (Weertman and Weertman, 1980) the decohesion energy within the
fracture process zone can be calculated by:
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1

Gr = ~3 /Aac D(X1)o12(X,) dX, (8)

where the coordinate X is originated at the crack tip and Aac represents the length of fracture process zone;
D(Xy) is related to the mode II separation by:

D(Xi) = ~2fu], ®)
Eq. (8) can also be derived by calculating the J-integral along a contour surrounding the fracture process
zone along the lower and upper boundaries of the bonding layer.

Fig. 16 shows the evolution of decohesion energy Gz computed using (8) with crack length a and time ¢,
respectively, with varying /. Two stages can be identified in both Gr(a) and Gg(¢) curves: crack initiation-
acceleration stage and steady-state propagation. Initially, Gy increases while the slopes dd% and (d%) de-
crease with increasing a and ¢. Both Gg(a) and G(¢) finally approach constant levels whereas the average
value of dd% or (dd%) approaches zero, implying a steady-state propagation. The amplitude of Gy is nearly
linearly proportional to the material intrinsic length / in this stage.

Plotted in Fig. 17 are the fracture process zone sizes against time and crack length, respectively. They
demonstrate a similar trend as those shown in Fig. 16. These numerical results demonstrate that at steady-
state propagation stage, the fracture process zone size Aac attains a size that is linearly proportional to
material intrinsic length, i.e.

Aac = I - F(material constants, /) (10)

where F is a function of material constants and extrinsic length 4. According to Fig. 3, / scales energy
dissipation at softening stage. For a linear softening, / actually is the inverse of w, the slope of the traction-
separation law; thus

F(material constants, /)

(1)

Aac
w

(10) or (11) conforms the general conclusion that is obtained by the theoretical analysis of Uenishi and Rice
(2003).
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Presented in Figs. 18 and 19 are another set of simulations with fixed / but varying 4, demonstrating that
smaller 4 also results in less energy dissipation and shorter fracture process zone. The slip-field analysis
from Hao et al. (1997) indicates that a smaller ratio of 4 to the specimen thickness produces higher stress
triaxiality and strain gradient within the bonding layer, which drives damage evolution and accelerates
failure of the bonding layer material. Consequently, it accelerates decohesion and debonding. On the other
hand, smaller % reduces the contribution of the elastic plastic stress—strain field in the bonding layer because
there is less space left for such a kind of deformation. All of these make the bonding layer more “brittle”,
represented by less energy dissipation and shorter fracture process zone size.

4.6. Crack propagation speed

4.6.1. Intersonic and supersonic propagation

We define the propagation speed of the leading edge of fracture process zone as the crack speed. Fig. 20a
shows the variation in propagation speed with crack tip position from two computations with the same
length scales (I = 0.02, 2 = 0.02) but different strain rate hardening power m, as defined in (5). Similar to
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the results illustrated in Fig. 7, the propagation speed for both cases accelerates to the supersonic regime in
a very short time when the fracture process zone bursts out from the notch tip. Then it falls back into the
intersonic regime, followed by propagation at speeds fluctuating between ¢, and ¢, where « is about v/2
for the case m = 0.01 and 1 for the case m = 0.1. The spacing of each oscillation is about 1.5-2 mm of crack
growth. The average speeds, which can be determined as the average slope of the a(z) curve, lie in the region
between v/2¢, and ¢, for both cases.

Fig. 20b and c¢ show the corresponding stress shocks. For the case with a larger m (Fig. 20c), two stress
shocks appear in the lower half of the specimen. The first arc-shaped stress shock characterizes supersonic-
like propagation as it appears only when the propagation speed surpasses the dilatational wave speed. The
second shock appears when propagation is faster than shear stress wave. This observation supports the
results shown in Fig. 20a where the average propagation speed for this case is close to the dilatational wave
speed and the upper bound of the propagation speed surpasses ¢;.

It should be emphasized that all the numerical simulations in the present work show that the fracture
process zone, thus crack tip, is always behind the dilatational wave front, e.g. Fig. 7. However, a spon-
taneous failure along a thin bonding layer occurs after a dilatational wave front sweeps passed, which can
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Fig. 20. Intersonic and supersonic crack propagations. (a) Speed vs. crack growth for two simulations with different strain rate
hardening power. (b) The stress shock for case with m = 0.01. (c) The stress shock for case with m = 0.1.
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causes the crack front to jump ahead in an instant at faster than ¢;. As crack propagation is a non-inertia
motion (Freund, 1990), the fracture process zone and crack tip can never surpass the dilatational wave
front if there is no previously imposed stress or strain on the weak path. Hence, a supersonic-like weak-path
propagation can not be sustained. It will fall back to intersonic regime immediately, as demonstrated in
Fig. 20a.

The results presented in Fig. 20 demonstrate that the strain rate hardening power m has strong effects on
intersonic crack propagation. A quantitative explanation is that higher strain rate sensitivity (higher m)
results in less ductility for the bonding layer material because its yield strength will be elevated and the
corresponding softening/damage evolution will be speeded up in the post-bifurcation stage. These results
agree qualitatively with the analysis of single dislocation motion in Rosakis (2001).

4.6.2. The effect of remote boundary condition

The simulations with various projectile velocities (7},) have been performed with other parameters held
fixed. The relation between the average crack propagation speed and V; is plotted in Fig. 21a, which
demonstrates a slight elevation of propagation speed when ¥}, varies from 25 to 70 m/s. Plotted in Fig. 21b
are the evolution of decohesion energy against time for the cases in Fig. 21a, from which one can distin-
guish that higher ¥}, results in earlier crack initiation.

The diffraction solution of an impact induced stress wave around a crack tip (Achenbach, 1973) indicates
that the amplitude of shear stress at the crack tip can be estimated by

E-V
013 X \/E and O_rlnzax = P (12)
C

Hence, at a given instant ¢, a higher impact speed ¥}, causes higher stress. The sequence of crack propa-
gation demonstrated in Fig. 21b hints that an intersonic crack initiates when the impact induced shear stress
impulse reaches a certain threshold value at the crack tip. Taking the second equation of (12) as the driving
force and 1yo(= %’), the shear yield strength of bonding layer, as the resistance, we define a parameter R;,
the ratio of this driving force and resistance:

o _E !

=24 (13)

Tyo Tyo

R,

to characterize intersonic crack growth. When R, is greater than RS, the threshold of Rs, intersonic
propagation will occur; otherwise, the imposed stress impulse is not strong enough to trigger “spontane-
ous” debonding along a weak path, and a crack will grow at subsonic speeds. In the cohesive element
analysis of Needleman (1999), the bonding strength is taken as a control parameter and a transition from
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Fig. 21. The effects of strain rate hardening and impact velocity on propagation velocities. (a) The average propagation speed vs.
impact velocity. (b) The decohesion energy vs. time for the cases in (a). (c) Nominal crack speed vs. R; defined in (13).
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subsonic to intersonic propagation has been observed when the bonding strength is decreasing. By com-
bining the numerical results in Needleman (1999) with the present work, Fig. 21¢ presents the relationship
between propagation speeds and R. This figure shows that the threshold RS is around one.

4.6.3. Comparison with theoretical analysis

A further question is how fast can a crack grow when R, > R"?

Based on the Weertman’s moving dislocation solution (Weertman, 1969; Weertman and Weertman,
1980) and Rice-Thomson’s dislocation emission model (Rice and Thomson, 1974), a generalized Bilby—
Conttrell-Swinden—Dugdale model (Bilby et al., 1963) has been proposed in Hao et al. (in press) (see Fig.
22). In this work, the solutions of steady-state weak-path intersonic crack growth with three classes of
cohesive laws have been obtained. In this model the remote boundary condition has been represented as
equivalent traction acting on the crack surface, which is expressed as the summation of a constant remote
imposed stress 7™ and a non-constant term 77™°**D(x). The latter can be a remote, imposed stress rate or
non-uniform, distributed, remote stress. In this product, the D(x) is given by (9) and 75™°" is proportional
to Ry:

for v < ¢

0
= {EQ(& — ) for v > ¢, (14)

Cr
R

where Q is a function of the specimen geometry which can be calculated through an energy balance.

According the solutions in Hao et al. (in press) the relationships between propagation speed and 777™%
are plotted in Fig. 23a for different ///. In this figure each curve includes two parts separated by the saddle
point defined by x,cs, where V2 <Ky <a /cs. In the interval ¢y < v < Kyc, crack growth is unstable as the
propagation speed will be increasing while 77" decreases. The interval xyc; <v < ¢ represents a stable
propagation regime, in which crack acceleration requires increasing 75™°*. The coefficient «, is a function
of the material intrinsic and extrinsic lengths, strain rate hardening parameters, and remote boundary
condition represented by 77™°. A comparison between numerical computation and theoretical prediction
is given in Fig. 23b. The difference in the results is due to the slight difference in boundary condition
between two approaches.

T =Z T
TTT ¢ I
= Al
L (cohesive zone)
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Fig. 22. Dislocation accumulation-induced intersonic crack growth model (Hao et al., in press); (a) lattices before crack growth;
(b) dislocation emission (Rice and Thomson, 1974); (c) smeared-out moving dislocation (Weertman’s solution, 1969); (d) dislocations
accumulation-induced steady-state intersonic crack growth with fracture process zone.



S. Hao et al. | International Journal of Solids and Structures 41 (2004) 1773—1799 1795

2000

16 1.8 H
16F [——m=0.05 §V=j§‘-‘s ;r3V=Cd
1500 14 [-= m=001] ;i
12} e Simulation | II
§ - 4| (@001 I
o Py l: !
I e : < 08} ; f
06 unstable , | _ stable 1
o5 0.6 solution ~ | ~ solution .'f
04 L : .
s00f (X 0.4 e i ”
02 02F ">~ : oo * ‘
- ' i "
wi=01 [ et :
1 12 1.4 1.6 1.8 2
) - B R B R R ] V/Cs
(a) ViICs (b)

Fig. 23. (a) Relationship between propagation speed ¥ and 757, theoretical solution (Hao et al., in press); (b) comparison between
predictions and present numerical solutions.

Fig. 24. Intersonic crack propagation deceleration—contours of the strain perpendicular to the crack pathwhere the white arrow
indicates the crack tip position in each figure. (a) = 1.4e=5 (s), (b) t=1.6e-5 (s), (c) t=1.7e=5 (s) and (d) = 1.95¢-5 (s).

4.7. Sudden deceleration of intersonic crack growth

Two issues are discussed in this subsection: the condition that causes sudden deceleration and the
corresponding wave propagation mechanism.

Fig. 24 is a set of the snapshots of strain shocks during a deceleration process, where the white arrow
indicates the position of the crack tip in each figure. It demonstrates that before deceleration the crack
grows with an intersonic speed, accompanied by a strain shock radiated from the crack tip ( Fig. 24a).
According to the angle between the strain shock and fracture path, the average propagation speed is about
1.46¢,. This crack tip shock radiation ceases in Fig. 24b while the existing strain shocks continuously spread
out and march forwards passing the moving crack tip (Fig. 24c and d), which implies that the crack
propagation has already decelerated to sub-Rayleigh regime.

Fig. 9b indicates that after the projectile impacts the specimen edge, a ¢, impulse travels with the
dilatational wave speed transversely through the specimen. The shear stress component caused by this
dilatational stress impulse triggers the mode II crack initiation and drives it at intersonic speeds when R;
(13) is greater than its threshold RY. Since the average crack propagation speed is always slower than
dilatational speed, after the dilatational stress impulse passes the crack tip, R, drops below RS immediately,
so the crack loses its driving force and its propagation speed decreases.
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position as (1=t,)
Fig. 25. Wave mechanisms before and after a crack decelerates from intersonic to subsonic speeds where # denotes the time, D; and

S; are the dilatational wave and shear wave radiated from the crack tip at 7, respectively, and E; is the envelop of all shear wave fronts
at £,.

Fig. 24 also demonstrates that after crack deceleration, the strain shocks radiated out before deceleration
continue to move forward with a constant angle. Several strain shocks appear and one follows another,
reflecting the fluctuating propagation speed shown in Fig. 20a. In Fig. 24 the white dash lines indicate the
extension of the strain shock fronts. The intersections between these white dash lines and the weak path
indicate the position of crack tip if there were no deceleration. It should also be noticed that the strain
shocks, which were straight lines before the crack decelerates, become curved bending toward the crack tip.
If we consider a moving crack tip as a source which radiates both dilatation and shear waves, the shocks
demonstrated in Fig. 24 are actually the envelopes of the shear waves radiated from the crack tip at each
instance. When the crack propagation speed decelerates from intersonic regime to subsonic regime, this
envelop will degenerate to a curve, as depicted in Fig. 25. It implies that the intersonic steady-state crack tip
stress—strain field radiates out from the position where deceleration occurs with a shear wave speed. This
phenomenon is similar to the theoretical prediction in Freund’s subsonic non-uniform crack motion
solution (Freund, 1972) where the equilibrium solution immediately radiates out from the crack tip at a
speed less than dilatation wave speed when a sub-Rayleigh crack propagation is suddenly stopped.

5. Conclusions

Intersonic crack growth has been investigated based on the dynamic fracture test conducted by Rosakis
and his co-authors (Rosakis et al., 1999). A three-phase interfacial fracture model is proposed for numerical
simulations, in which an additional material phase is introduced to reproduce the mechanical behavior of
the interface. Numerical simulations have been performed with varying load, material intrinsic and
extrinsic length, strain rate hardening exponents. The results and conclusions are summarized as follows:

1. The numerical simulations demonstrate that the crack propagation speed exhibits oscillations ranging
from intersonic to supersonic speeds. The upper bound of this oscillation is around the dilatational wave
speed whereas the lower bound is around the shear wave speed to v/2 times shear wave speed, depending
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on the material intrinsic length, bonding layer thickness, strain rate sensitivity, and loading conditions.
The steady-state propagation speed is the average of these upper and lower limits which lies between ¢y,
and dilatation wave speed, where V2<K, < ¢ /cs. Both the numerical solution and the theoretical solu-
tion, derived from the generalized Bilby—Cottrell-Swinden—Dugdale model (Hao et al., in press), indicate
that the coefficient x, is a function of the material intrinsic and extrinsic lengths, strain rate hardening
parameters, and remote boundary conditions.

2. The parameter R;, defined as the ratio between remote impact velocity and material shear strength:

E-V,

TyoCl

R, =

is proposed to characterize crack propagation speed. An estimated threshold of R defining the boundary
between subsonic and intersonic propagation is about unity. When Ry is smaller than its threshold,
a crack grows with sub-Rayleigh speed; otherwise, it grows with an intersonic speed.

3. Stress shocks, characterized by both the intersonic and supersonic speeds, have been captured in the
numerical simulations for the case where the average crack propagation speed is close to ¢j.

4. Two types of contact exist, contact within fracture process zone and contact between the crack wedges
behind moving crack tip. In the present simulation the former is taken into account by the constitutive
modeling of the interface material phase; the latter is simulated by additional numerical contact algo-
rithm. The contact behind crack tip can cause additional strain shocks. A “‘self-healing” mechanism,
crack surfaces sticking together, has been captured in the simulation. Both material intrinsic and extrin-
sic lengths have strong effects on the contact behavior.

5. The dual functions of material intrinsic length are presented in the simulations: governing the strain gra-
dient induced hardening before material bifurcation and scaling the dissipated energy after bifurcation.
A nearly linear relationship between fracture process zone size and material intrinsic length has been
found during steady-state propagation.

6. The material extrinsic length, defined as the bonding layer thickness, determines the ratio of the effects
from the elastic—plastic crack tip field inside a bonding layer and the elastic field in the surround matri-
ces. It has a strong effect on the contact/self-healing behind moving crack tip.

7. Crack deceleration from intersonic to subsonic speeds has been also captured in the numerical simula-
tions. Crack deceleration occurs after an impact induced dilatational stress impulse passes the crack tip
which moves at intersonic speeds. The intersonic stress—strain field, which is characterized by shear stress
shock radiation, continuously spreads out at the shear wave speed from the site where deceleration
occurs. This observation is similar to the Freund’s subsonic non-uniform crack motion solution sub-
jected to general load (Freund, 1972).
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